In (IV), however, the C4 substituent is hydroxy and the angle spreading found in (I) and (II) has all but vanished. These differences are probably less the result of the steric properties of the O-methyl substituents in (I) and (II) than of the intramolecular $H \cdots O5$ link observed in (IV). In (I), for example, the O4 $\cdots O5$ distance of 2.810 (3) Å is close to the usual 2.8 Å O $\cdots O$ contact distance, whereas the corresponding 2.56 (1) Å value in (IV) is substantially shorter.

The crystal packing is ordinary. There are no intermolecular contacts less than the sum of the appropriate van der Waals radii.

This work was supported by the Foreign Relations Coordination Unit of the Supreme Council of Universities of Egypt (No. 831003) by the National Science

Foundation for the X-ray diffractometer-computer system (No. CHE-84-02155).

References

BEALE, J. P. (1973). Cryst. Struct. Commun. 2, 125-128.

- CARPY, A., HICKEL, D. & LEGER, J. M. (1979). Cryst. Struct. Commun. 8, 835-838.
- HUTTRER, C. P. & DALE, E. (1951). Chem. Rev. 48, 543-579.
- LEGER, J. M., CARPY, A., HICKEL, D. & LAGUERRE, M. (1981). Acta Cryst. B37, 1000-1002.
- Molecular Structure Corporation (1986). TEXSAN Structure Analysis Package. MSC, 3304 Longmire Drive, College Station, TX 77840, USA.
- STEMPLE, N. R. & WATSON, W. H. (1972). Acta Cryst. B28, 2485-2489.
- ZACHARIASEN, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1988). C44, 678-681

Structures of 1*H*-Indole-3-ethylene-3'-methoxysalicylaldimine (3'-Meo-salTPA) and 3-[3'-Azapentyl-3'-en-4'-(2''-hydroxyphenyl)]indole (OHAPH-TPA)

BY P. MARTIN ZARZA, P. GILL,* M. C. DÍAZ GONZÁLEZ AND M. G. MARTIN REYES

Departamento de Química Inorgánica, Universidad de La Laguna, Tenerife, Canary Islands, Spain

J. M. ARRIETA

Departamento de Química, Facultad de Ciencias, Universidad del País Vasco, Apartado 644, Bilbao, Spain

V. NASTOPOULOS AND G. GERMAIN

Unité de Chimie Physique Moléculaire et de la Cristallographie, Université de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium

AND T. DEBAERDEMAEKER

Sektion für Röntgen- und Elektronenbeugung, Universität Ulm, D-7900 Ulm, Federal Republic of Germany

(Received 3 March 1987; accepted 23 November 1987)

Abstract. 3'-Meo-salTPA, systematic name 2-[2-(1Hindol-3-yl)ethyliminomethyl]-6-methoxyphenol, $C_{18}H_{18}N_2O_2$, $M_{\star} = 294.34,$ triclinic, *Ρ*1, a = $11.932(2), b = 11.590(3), c = 11.401(4) \text{ Å}, \alpha =$ 89.94 (2), $\beta = 101.44$ (2), $\gamma = 101.24$ (2)°, V = 1514 (1) Å³, Z = 4, $D_x = 1.29$, $D_m = 1.30$ Mg m⁻³, λ (Mo K α) = 0.71069 Å, F(000) = 624. $\mu =$ 0.92 mm^{-1} , room temperature, final R = 0.0505, wR = 0.0597 for 1809 observed reflections. OHAPH-TPA, systematic name 2-{1-[2-(1H-indol-3-yl)ethylimino]ethyl}phenol, $C_{18}H_{18}N_2O$, $M_r = 278.36$, monoclinic,

0108-2701/88/040678-04\$03.00

b = 14.669 (4), $P2_1/a$, a = 10.018 (2), c =10.015 (2) Å, $\beta = 90.54$ (2)°, V = 1472 (1) Å³, Z = 4, $D_m = 1.29 \text{ Mg m}^{-3}$, F(000) = 592, $D_{r} = 1.26$, $\lambda(Mo K\alpha) = 0.71069 \text{ Å}, \ \mu = 0.44 \text{ mm}^{-1}, \text{ final } R =$ 0.0962, wR = 0.1174 for 1490 observed reflections. The two structures are compared and some structural features are emphasized. The C7A-C8A bond length for both compounds is shorter than a normal aromatic C-C bond. Both structures also show intramolecular and intermolecular hydrogen bonds, the first between the phenolic H and the N of the imino group and the second between the indolic N-H and the phenolic O of the other molecule.

© 1988 International Union of Crystallography

^{*} Author to whom correspondence should be addressed.

Introduction. Tryptamine (1*H*-indole-3-ethanamine) is able to condense aromatic carbonyl compounds as previously described (Rodriguez, Medina de la Rosa, Gili, Martin Zarza, Martin Reyes, Medina & Diaz González, 1987). In this work we have examined the crystal structures of the products obtained for the first time by condensation of tryptamine with 3-methoxysalicylaldehyde and with *ortho*-hydroxyacetophenone. The compounds obtained are respectively 3'-MeosalTPA and OHAPH-TPA. These compounds are ligands that form complexes with transition metals (Martin Reyes, Gili, Martin Zarza, Medina Ortega & Diaz González, 1986) and the structures are compared with those of similar compounds previously described.

Experimental. 3'-Meo-salTPA was obtained as a yellow precipitate upon mixing and refluxing ethanol solutions of tryptamine and 3-methoxysalicylaldehyde. After filtering and washing with ethanol, the compound was recrystallized from ethanol. Yellow prismatic crystals, crystal ca $0.15 \times 0.16 \times 0.30$ mm, cell parameters by least squares from the setting angles of 15 reflections $(10 < 2\theta < 25^{\circ})$; 5336 independent reflections measured, ω scan up to $2\theta = 50^{\circ}$. One standard reflection measured every 50 reflections showed only random deviation from its mean intensity. 1809 reflections with $I \ge 2 \cdot 5\sigma(I)$ were considered observed and included in the refinement; index range h-12, +11; k-13, +13; $l0, +13. \sum w(\Delta F)^2$ minimized, anisotropic thermal parameters for non-H atoms. H positions determined by difference Fourier synthesis, refined with an overall isotropic temperature factor. Final R = 0.0505 and wR = 0.0597, $w = [\sigma^2(F) + 0.009202F^2]^{-1}$; max. and min. electron densities in final difference map 0.17, $-0.21 \text{ e} \text{ Å}^{-3}$.

OHAPH-TPA was obtained in a similar manner by mixing and refluxing equimolar ethanol solutions of tryptamine and ortho-hydroxyacetophenone. Yellow prismatic crystals of OHAPH-TPA were obtained by recrystallization from ethanol. Unit-cell parameters were determined by a least-squares analysis of 2θ values for 15 reflections ($10 < 2\theta < 25^{\circ}$) measured with the diffractometer from a crystal ca $0.20 \times 0.15 \times$ 0.25 mm. Intensity measurements were made for 2585 independent reflections of which 1490 were considered observed with $I \ge 2.5\sigma(I)$ and included in the refinement. Index range h - 11, + 11; k 0, + 17; l 0, + 11. ω scans up to $2\theta = 50^{\circ}$. One standard reflection measured every 50 reflections showed only random deviation from its mean intensity. $\sum w(\Delta F)^2$ minimized. anisotropic thermal parameters for non-H atoms. H positions determined by difference Fourier synthesis, refined with an overall isotropic temperature factor. Final R = 0.0962 and wR = 0.1174, $w = 2.6399 \times [\sigma^2(F) +$ $0.002198F^2$]⁻¹. Max. and min. electron densities in final difference map 0.46, -0.37e Å⁻³. The high value of R is due to the poor quality of the single crystal.

For both compounds intensity data were measured with an automated Philips PW1100 four-circle computer-controlled diffractometer; graphite-monochromated Mo K α radiation, $\lambda = 0.71069$ Å, was used. Lorentz and polarization but not absorption corrections were made. The structures were solved by direct methods (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980) and Fourier synthesis (Stewart, Kundell & Baldwin, 1970). Torsion angles, planes and dihedral angles were calculated by the *PARST* program (Nardelli, 1982). Scattering factors from *International Tables for X-ray Crystallography* (1974). Least-squares refinement with *SHELX*76 (Sheldrick, 1976). The experimental densities were determined by pycnometry.

Discussion. Table 1 list the final atomic parameters' and their estimated standard deviations, following the numbering schemes of Figs. 1 and 2.* Table 2 gives bond angles and bond lengths. Selected torsion angles for both compounds are listed in Table 3. Stereoviews of the molecule are given in Figs. 3 and 4.

Some interesting structural data can be observed in these results; for example, the lengths of the C7A-C8Abond are 1.38 (1) and 1.37 (1) Å for 3'-Meo-salTPA and OHAPH-TPA, respectively, similar in both cases to that found for the compound salTPA [1.36 (1) Å] (Rodriguez *et al.*, 1987) and are slightly shorter than the expected value for a normal aromatic C-C bond (1.395 Å). This shortening of the bond has also been observed in tryptamine hydrochloride, a radiation protector (Wakahara, Fujiwara & Tomita, 1973).

The N12A-C13A bond corresponding to the imino group of 3'-Meo-salTPA and salTPA (Rodriguez *et al.*, 1987) is 1.27(1) Å, similar to that found for OHAPH-TPA, and indicates a double bond for the -C=N group.

The distance O20A-C19A for 3'-Meo-salTPA is $1\cdot 29$ (1) Å, which is shorter than in the case of salTPA $[1\cdot 34 (1) Å]$ and indicates double-bond character for the C-O group. The value found for this same group in the case of OHAPH-TPA is $1\cdot 31 (1) Å$, which is intermediate between values in 3'-Meo-salTPA and salTPA.

The N12A-C13A-C14A bond angle for 3'-MeosalTPA is $123.6(6)^{\circ}$ while this same angle is $118.5(7)^{\circ}$ for OHAPH-TPA. This decrease can be explained by the steric impediment caused by the methyl group.

The majority of the torsion angles for 3'-MeosalTPA are to be found between 0 and 180° as in the

^{*} Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44563 (19 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

case of salTPA (Rodriguez et al., 1987). The C7A-C10A-C11A-N12A torsion angle is $60.2(7)^{\circ}$, and the C7B-C10B-C11B-N12B torsion angle is -62.6 (7)°, indicating a synclinal disposition through the C10-C11 bonds (Klyne & Prelog, 1960). The indole groups of 3'-Meo-salTPA in molecules A and Bform a dihedral angle of $90.0(1)^{\circ}$.

In OHAPH-TPA it is observed that the indole and phenol rings are to be found on different planes, forming a dihedral angle of approximately 70°. On the other hand, the system formed by the imino group (N12-C13), the oxygen (O21) and the phenyl group is not located on the same plane. The torsion angle for C7-C10-C11-N12 of OHAPH-TPA is 68.2 (9)°,

Table	1.	Fractional	atomic	coordinates	(×10 ⁴)	with
	e.s.	d.'s in pare	ntheses a	and B _{ea} value	s (Å ²)	

Table 2. Bond distances (Å) and angles (°) with e.s.d.'s in parentheses

	x	у	Z	Beg	3'-Meo-salTPA			
3'-Meo-salTPA		•			C2AC1A	1.39 (1)	C2B-C1B	1.37 (1)
ClA	1444 (6)	3697 (6)	5431 (6)	6.02	C6AC1A	1.41 (1)	C6B-C1B	1-40 (1)
C24	958 (6)	4423 (7)	6070 (7)	7.83	C3AC2A	1.40(1)	C3B-C2B	1-37 (1)
C3A	1627 (7)	5268 (6)	6932 (7)	7.18	C4A-C3A	1.37 (1)	C4B-C3B	1-37 (1)
C4A	2821 (6)	5430 (5)	7206 (5)	5.67	C5AC4A	1.40 (1)	C5B-C4B	1.38 (1)
C5A	3331 (6)	4703 (5)	6582 (5)	4.75	C6A-C5A	1.42 (1)	C6B-C5B	1.40(1)
C6A	2667 (5)	3846 (5)	5692 (5)	4.61	N9A-C5A	1.37(1)	N9B-C5B	1.38(1)
C7A	3488 (5)	3344 (4)	5225 (5)	4.60	CIA-CBA	1.42(1)	$C^{B} - C^{B}$	1.42(1)
C8A	4583 (5)	3866 (5)	5846 (5)	5.08	$C_{A} - C_{A}$	1.58(1)	$C_{0}D - C_{1}D$	1.48 (1)
N9A	4486 (5)	40 / 8 (4)	0000 (4)	5.63	N0A = C8A	1.36(1)	N98_C88	1.36 (1)
CILA	A184 (6)	2403 (5)	3692 (5)	5.61	C114-C104	1.51(1)	C11B-C10B	1.51(1)
N124	5069 (5)	1792 (4)	4585 (4)	4.91	N12A - C11A	1.45(1)	N12B-C11B	1.47 (1)
C134	6166 (6)	2028 (5)	4630 (6)	5.30	C13A-N12A	1.27 (1)	C13B-N12B	1.28 (1)
C14A	6994 (5)	1679 (5)	5566 (5)	4.78	C14A-C13A	1.42 (1)	C14BC13B	1-42 (1)
C15A	8195 (6)	1971 (5)	5531 (6)	6.37	C15A-C14A	1.42 (1)	C15B-C14B	1-40 (1)
C16A	9001 (6)	1661 (6)	6424 (7)	7.13	C19AC14A	1.42 (1)	C19B-C14B	1.42 (1)
C17A	8651 (6)	1035 (5)	7382 (6)	5.96	C16A-C15A	1.36 (1)	C16B-C15B	1.35 (1)
C18A	7504 (6)	751 (5)	7444 (6)	4.98	C17A-C18A	1.40(1)	C17B-C16B	1.41 (1)
C19A	6614 (6)	1059 (5)	6535 (5)	4.56	C18AC17A	1.36(1)	C18B-C17B	1.37(1)
C20A	5525 (3)	798 (3)	6589 (3)	5.32	C19A - C18A	1.43(1)	C19B - C18B	1.43(1)
C21A	7074 (3)	151 (4)	8347(3)	5.75	021A-C18A	$1 \cdot 3 / (1)$	$O_2 B - C_{10}B$	1.38(1)
CZZA	/881 (6)	-330 (6)	9205 (6)	7.40	C20A - C19A	1.42 (1)	$C_{20B} = C_{19B}$	1.43(1)
	1281 (0)	-1074(7) -1075(9)	7340 (11)	10.49	C22A-C21A	1.42(1)	0220-0210	1.45(1)
CIR	1082 (8)	-223(10)	6701 (9)	10.82	CIA-C2A-C3A	123-0 (7)	C11A-N12A-C13	3A 126-3 (5)
C4B	2422 (8)	37 (7)	6868 (7)	7.92	C2A-C3A-C4A	121.5 (7)	N12A-C13A-C14	4 A 123⋅6 (6)
C5B	3045 (7)	-562 (5)	7721 (6)	5.60	C3AC4AC5A	116-6 (6)	C13A-C14A-C19	<i>A</i> 119⋅8 (6)
C6B	2502 (6)	-1412 (5)	8408 (6)	5.60	C4AC5AN9A	129.1 (5)	C13A-C14A-C15	5A 119.5 (5)
C7B	3394 (6)	-1824 (5)	9218 (5)	5.04	C4AC5AC6A	122.8 (6)	C15A-C14A-C19	PA = 120.6(6)
C8B	4442 (5)	-1216 (5)	8981 (5)	5-27	C6A-C5A-N9A	108-1 (5)	CI4A - CI5A - CI6	0A 120-4 (0)
N9 <i>B</i>	4231 (5)	-459 (4)	8089 (4)	5.50	CIA - C6A - C5A	119.4 (6)	CISA - CISA - CI	$A = 120 \cdot 2(7)$
C10B	3219 (5)	-2703 (5)	10141 (6)	6.38	$C_{JA} = C_{0A} = C_{TA}$	134.5 (6)	C10A = C17A = C18	14 125.1 (6)
C11 <i>B</i>	4290 (6)	-2786 (5)	11071 (6)	6.76	C64 - C74 - C104	124.7 (5)	C174 - C184 - C19	121.8(6)
NI2B	5196 (6)	-3156 (4)	10540 (5)	5.95	C6A - C7A - C8A	107.4 (5)	C19A - C18A - O2	IA 113-1 (6)
CIAB	0280 (7)	-2931 (5)	1009(5)	5.21	C8A-C7A-C10A	127.9 (6)	C14A-C19A-C18	BA 116-3 (6)
C15B	8316 (7)	-3270(3) -3020(6)	11078 (6)	7.54	C7A-C8A-N9A	109.5 (5)	C18A-C19A-O20	A 122.2 (5)
C168	9142 (7)	-3330 (6)	10508 (7)	7.99	C5A-N9A-C8A	108.9 (5)	C14A-C19A-O20	DA 121.5 (5)
C17B	8836 (5)	-3957 (6)	9394 (7)	6.66	C7A-C10A-C11/	4 115-5 (5)	C18A-O21A-C22	2A 116-7 (5)
C18B	7692 (5)	-4210 (5)	8809 (5)	5.00	C10A-C11A-N1	2A 111-8(5)		
C19 <i>B</i>	6795 (5)	-3873 (4)	9315 (5)	4.67	ОНАРН-ТРА			
C20B	5720 (3)	-4122 (3)	8764 (3)	5.77		1 25 (1)	C10 C11	1.52 (1)
C21B	7280 (3)	-4814 (4)	7720 (4)	6.22	CI = C2	1.33(1)	N12 C13	1.32(1)
C22 <i>B</i>	8099 (6)	-5278 (6)	7196 (6)	7.87	$C_{2}-C_{3}$	1.38 (1)	C13-C14	1,50 (1)
ОНАРН-ТРА					$C_{2} = C_{3}$	1.36(1)	C13-C15	1.44(1)
CI	-58 (7)	5856 (6)	3149 (7)	4.79	C4C5	1.35(1)	C15-C16	1.44 (1)
C2	-461 (8)	6724 (6)	3333 (8)	5.08	C5C6	1.42 (1)	C15-C20	1.42 (1)
C3	308 (8)	7308 (6)	4104 (8)	5.36	C5-N9	1.41 (1)	C16-C17	1.35 (1)
C4	1472 (9)	7047 (6)	4699 (8)	5.35	C6C7	1.50 (1)	C17–C18	1.37 (1)
C5	1866 (7)	6171 (6)	4535 (7)	4.53	C7C8	1-37 (1)	C18-C19	1.38 (1)
C6	1142 (7)	5528 (5)	3748 (7)	4.26	C7-C10	1.50(1)	C19-C20	1.42(1)
C7	1837 (7)	4623 (6)	3742 (7)	4.62	C8-N9	1.42(1)	C20-021	1.31(1)
C8	2937 (7)	4776 (8)	4536 (8)	5.87	C2C1C6	121.0 (8)	C10-C11-N12	200.0 (7)
N9	2986 (6)	5687 (6)	5016 (6)	6.01	C1C2C3	119.7 (8)	C11-N12-C13	125.7 (7)
C10	1463 (8)	3784 (6)	2959 (9)	5.70	C2-C3-C4	122-8 (8)	N12-C13-C15	118-5 (7)
	1802 (7)	3830 (0)	1302 (9)	4.52	C3C4C5	117.6 (8)	N12-C13-C14	119-6 (7)
013	3327 (0)	3814 (5)	306 (8)	4.21	C4-C5-N9	132-0 (8)	C14-C13-C15	121.7 (7)
C14	3244 (9)	3859 (6)	-1006 (9)	6.01	C4-C5-C6	123.2 (7)	C13-C15-C20	120-8 (6)
C15	5409 (7)	3721 (4)	378 (7)	3.97	C6-C5-N9	104.8 (7)	CI3-C15-C16	121.6 (7)
C16	6203 (9)	3643 (5)	-805 (8)	4.97		110.9 (4)		11/-5(/)
C17	7543 (9)	3520 (6)	-755 (9)	5.73		133.5(7)	C16_C17_C19	122.4 (7)
C18	8174 (8)	3466 (6)	462 (9)	5.28	C6-C7-C10	127.8 (7)	C17-C18-C19	122.1 (8)
C19	7484 (7)	3531 (5)	1651 (8)	4.86	C6-C7-C8	102.9 (7)	C18-C19-C20	120.0 (7)
C20	6080 (7)	3665 (5)	1631 (7)	4.03	C8-C7-C10	129.1 (7)	C15-C20-C19	118.7 (6)
C21	5435 (5)	3718 (4)	2760 (5)	5.69	C7-C8-N9	112.0 (7)	C19-C20-O21	119-5 (6)
					C5-N9-C8	109.5 (6)	C15-C20-O21	121.7 (6)
	B =	$= \frac{8}{\pi^2} \sum_i \sum_i U_{ii} a_i^* a_i^* a$,. a ,.		C7-C10-C11	112.5 (7)		

 $B_{eq} = \frac{8}{3}\pi^2 \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$

corresponding to a synclinal disposition through the C10-C11 bond, analogous to that found for 3'-Meo-salTPA.

Fig. 1. View of the 3'-Meo-salTPA molecule.

Fig. 2. View of the OHAPH-TPA molecule.

Fig. 3. A perspective view of the structure of 3'-Meo-salTPA.

Fig. 4. View of the OHAPH-TPA molecule drawn with *PLUTO* (Motherwell & Clegg, 1978).

Table 3. Selected torsion angles (°)

3'-Meo-salTPA			
C7A-C10A-C11A-N12A	+60.2(7)	C11A-N12A-C13A-C14A	+176-4 (6)
C7B-C10B-C11B-N12B	-62.6 (7)	C11B-N12B-C13B-C14B	-178.2(6)
C10A-C11A-N12A-C13	A -145-9 (6)	C8A-C7A-C10A-C11A	-12.2(9)
C10B-C11B-B12B-C13B	B +155·6 (6)	C8B-C7B-C10B-C11B	+12.0 (9)
ОНАРН-ТРА			
C7-C10-C11-N12	+68.2 (9)	C10-C11-N12-C13	+174.7(7)
CII-N12-C13-C15	-174.6 (7)	C8-C7-C10-C11	-97(1)

The sign convention used is that of Klyne & Prelog (1960).

An antiperiplanar disposition through the N12–C13 bond with a torsion angle of -174.6 (7)° is observed for the C11–N12–C13–C15 bond.

Finally, intra- and intermolecular hydrogen bonds are observed in both compounds. The first is to be found between the imino nitrogen and the phenolic oxygen, the N···H-O distances being 2.61 (8) Å for 3'-Meo-salTPA and 2.51 (1) Å for OHAPH-TPA. A value of 2.60 (2) Å was found for salTPA (Rodriguez et al., 1987). The intermolecular hydrogen bond is established between the indolic nitrogen and the phenolic oxygen of another molecule, the N-H···O distance being 2.77 (1) Å for 3'-Meo-salTPA and 2.86 (1) Å for OHAPH-TPA. These intermolecular hydrogen bonds are responsible for the different orientation of one molecule with regard to the other in the elementary cell of both compounds.

PMZ is grateful to Gobierno Autonomo de Canarias and Caja General de Ahorros de Canarias for a research grant.

References

- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- KLYNE, W. & PRELOG, V. (1960). Experientia, 16, 521-568.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- MARTIN REYES, M. G., GILI, P., MARTIN ZARZA, P., MEDINA ORTEGA, A. & DÍAZ GONZÁLEZ, M. C. (1986). *Inorg. Chim. Acta*, 116, 153–156.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- NARDELLI, M. (1982). PARST. A System of Computer Routines for Calculating Molecular Parameters from Results of Crystal Structure Analysis. Univ. of Parma, Italy.
- RODRIGUEZ, M. L., MEDINA DE LA ROSA, E., GILI, P., MARTIN ZARZA, P., MARTIN REYES, M. G., MEDINA, A. & DÍAZ GONZÁLEZ, M. C. (1987). Acta Cryst. C43, 134–136.
- SHELDRICK, G. M. (1976). SHELX76 Program for crystal structure determination. Univ. of Cambridge, England.
- STEWART, J. M., KUNDELL, F. A. & BALDWIN, J. C. (1970). The XRAY76 system. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
- WAKAHARA, A., FUJIWARA, T. & TOMITA, K. (1973). Bull. Chem. Soc. Jpn, 46, 2481–2486.